Santa Clara University
DEPARTMENTS of MECHANICAL & ELECTRICAL
ENGINEERING

Date: June 9, 2011

I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY
SUPERVISION BY

Alvaro Gandara Astray, Gregory Emmanuel, Jake Pfitsch, Michael Vlahos,
Dean Willmert, and Alexander Wroblewski

ORRADRE LIBRARY
SANTA CLARA UNIVERSITY
SANTA CLARA, CALIFORNIA

ENTITLED

ANGLER: Autonomous Network for
Gradient Location in Environmental Research

BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE
DEGREE OF
BACHELOR OF SCIENCE IN MECHANICAL ENGINEERING

Christopher Kitts, Thesis Advisor
Timothy Hight, Chairman of Department
Cary Yang, Chairman of Department
ANGLER: Autonomous Network for
Gradient Location in Environmental Research

by

Alvaro Gandara Astray, Gregory Emmanuel, Jake Pfitsch, Michael Vlahos,
Dean Willmert, and Alexander Wroblewski

SENIOR DESIGN PROJECT REPORT

ORRADRE LIBRARY
SANTA CLARA UNIVERSITY
SANTA CLARA, CALIFORNIA

Submitted in partial fulfillment of the requirements
for the degree of
Bachelor of Science in Mechanical & Electrical Engineering
School of Engineering
Santa Clara University

Santa Clara, California
June 9, 2011
ANGLER: Autonomous Network for
Gradient Location in Environmental Research

Alvaro Gandara Astray, Gregory Emmanuel, Jake Pfirsch, Michael Vlahos,
Dean Willmert, and Alexander Wroblewski
Departments of Mechanical & Electrical Engineering
Santa Clara University
2011

Abstract

In the field of marine science, there exists a lack of efficiency present in data collection methods, especially for small bodies of water. This has begun to be addressed by the Santa Clara University Robotics Systems Lab (RSL) cluster boat project, of which project ANGLER is a continuation. The goal of this project was to design and fabricate an upgraded, second generation vessel for the cluster boat project. The primary function of the upgrade was to implement sensing capability, along with the necessary improvements to other systems to support this ability. The upgraded vessel was outfitted with a sensor package, a new, robust structure to support the sensors and electronics, improved communications hardware to support the increased bandwidth needs, and a new software implementation to better coordinate the motor control and sensor data. The system requirements included a minimum sensing rate of 1 Hz, a stable, modifiable structure, a sufficiently maneuverable vessel and communication hardware capable of handling the increased data transmission rate. These requirements were all met through a series of bench and field tests that produced a depth map using GPS and depth sensor data gathered at a local reservoir. The prototype boat demonstrated the ability to collect relevant data, leading us to the conclusion that integrating the ANGLER boat into the cluster boats project and implementing sensors on all of the boats would create an effective method of data collection for small bodies of water. Before the vessel is incorporated into the RSL cluster, a few upgrades are recommended. First, the wireless communication devices should be swapped for a longer range, lower bandwidth model. Second, the wiring and waterproofing of the system should continue to be addressed to ensure robustness in rough conditions. When these upgrades are implemented the ANGLER vessel will be ready to incorporate into the RSL cluster boats project.
Acknowledgements

We would like to begin by thanking our thesis advisor, Dr. Christopher Kitts for his inspiration, motivation, and help throughout the course of this project. We would like to offer a special thanks to graduate students Paul Mahacek and Thomas Adamek and the rest of the Santa Clara University Robotic Systems Lab for helping familiarize our team with the existing system and their extreme generosity regarding the RSL’s tools, facilities, and equipment. We would also like to thank Don MacCubbin and Ursula Uys for their help in the Santa Clara University machine shop.

Financial support for this program has been provided by the National Science Foundation under grant number CNS-0619940, NASA under SCU grant #UAF004, and Santa Clara University; any opinions, findings, conclusions and recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation, NASA, or SCU.
Table of Contents

Abstract .. iii
Acknowledgements ... iv

Table of Contents .. v
Chapter 1: Introduction .. 1
 1.1 - Background/Motivation: .. 1
 1.2 - Review of Field Literature ... 3
 1.2.1 - Cluster Space Specification and Control of Mobile Multirobot Systems 3
 1.2.2 - SWORDFISH Surface Vehicle for Network Centric Operations 4
 1.2.3 - Multi-Robot Exploration Under the Constraints of Wireless Networking ... 4
 1.2.4 - Harmful Algal Blooms and Red Tide Problems on the U.S.West 6
 1.3 - Review of Existing Systems ... 6
 1.3.1 - First Generation RSL ASVs .. 6
 1.3.2 - MIT SCOUT ... 7
 1.3.3 - VideoRay ... 10
 1.3.4 - Potential Opportunities for Improvement ... 11
 1.4 - Project Statement of Goals and Objectives ... 13

Chapter 2: System Overview .. 14
 2.1 - System Requirements & Customer Needs .. 14
 2.2 - Mission Architecture .. 16
 2.3 - System-Wide Component Block Diagram ... 16
 2.4 - Functional Decomposition Diagram .. 18
 2.5 - Benchmarking ... 20

Chapter 3: Sub-Systems ... 21
 3.1 - Kayak Hull .. 21
 3.2 - Propulsion .. 21
 3.3 - Mounting Structure .. 22
 3.3.1 - Requirements ... 22
 3.3.2 - Options .. 23
 3.3.3 - Design Process .. 23
 3.3.4 - Analysis .. 25
 3.3.5 - Description ... 25
 3.3.6 - Tests ... 27
 3.4 - Wireless Communication ... 27
 3.4.1 - Requirements ... 27
 3.4.2 - Options .. 28
 3.4.3 - Design Process .. 28
 3.4.4 - Description ... 29
 3.4.5 - Tests ... 30
 3.5 - On-Board Controller ... 30
 3.5.1 - Requirements ... 30
 3.5.2 - Options .. 31
 3.5.3 - Description ... 31
 3.5.4 - Design Process .. 33
 3.5.5 - Tests ... 33
List of Figures

Figure 1: A devastating “red tide” algal bloom & the Exxon-Valdez oil spill 1
Figure 2: Marine Scientist hand-sampling in shallow water & an algae sample 2
Figure 3: MBARI deployment of ROV Ventana & a stationary science buoy 3
Figure 4: Increasing overall cluster operation range through daisy chaining 5
Figure 5: First Generation surface vessels used by Paul Mahalek .. 7
Figure 6: A group of MIT SCOUT autonomous kayaks ... 8
Figure 7: The SCOUTs MVC and antenna system ... 9
Figure 8: Basic VideoRay Scout Package with tether system ... 10
Figure 9: VideoRay equipped with a submersible fluorometer by Turner Systems 11
Figure 10: The Pelican Apex 100 & Wilderness Pungo 100 kayak hulls 11
Figure 11: User scenario for the kayak cluster ... 17
Figure 12: System-Wide Sketch ... 17
Figure 13: Functional Decomposition Diagram ... 18
Figure 14: Function and Sub-Function Loop .. 19
Figure 15: Minn Kota 50lb Trolling Motor ... 22
Figure 16: Chosen Pelican Apex 100 kayak hull .. 26
Figure 17: Main rails and motor mounting rails & sensor mounting rails (bow) 26
Figure 18: Mounting structure with batteries ... 26
Figure 19: Structure (w/o electronics) & structure render (w/ electronics & hardware) 27
Figure 20: Old Ricochet Modern and new XBees Pro Wireless RF Transceiver 30
Figure 21: R.O.S. Topics and their relations ... 32
Figure 22: Map of Stevens Creek Reservoir showing the path of the ANGLER ASV 44
Figure 23: Depth map of the north section of Stevens Creek Reservoir 44
Figure 24: Crossbeam Motor Mount System analyzed in this report 76
Figure 25: Crossbeam Motor Mount Subsystem with respect to the kayak hull 76
Figure 26: System Setup for Structure Test 1 .. 78
Figure 27: Free Body Diagram of Cantilevered Crossbeams .. 78
Figure 28: System Setup for Structure Test 2 .. 79
Figure 29: Mesh grid created for analysis of motor mounting subsystem 80
Figure 30: Stress Results for Test 1 - Weight of Motors .. 82
Figure 31: Isoclipped Stress Results for Test 1 with stresses above 1,500 psi 82
Figure 32: Deflection Results for Test 1 - Weight of Motors - Detailed 82
Figure 33: Factor of Safety Results for Test 1 - Weight of Motors 83
Figure 34: Stress Results for Test 2 - Weight of motors in water and thrust force 84
Figure 35: Isoclipped Stress Results for Test 2 with stresses above 1,500 psi 84
Figure 36: Deflection Results for Test 2 - Weight of motors in water and thrust force 85
Figure 37: Factor of Safety Results for Test 2 - Weight of motors in water and thrust force .. 85
Figure 38: Sensor Mount System Setup .. 87
Figure 39: Deformation simulation of a constant force on the sensor plate (exaggerated x 2000) ... 87
Figure 40: Sensor Mount Configuration ... 88
Figure 41: Example Hole Pattern ... 89
Figure 42: Flow Trace of Three Slot Configuration ... 91
Chapter 1: Introduction

1.1 - Background/Motivation:

The Earth’s lakes, rivers, and oceans are some of humanity’s greatest resources, providing a home to countless species of plants and animals and serving as the continuously flowing lifelines of human civilization. Of all of these habitats, the coastal areas are some of the most productive and diverse regions; however, they are also the most adversely impacted by humans. A number of events including industrial run-off, oil spills, algal blooms, over-fishing, and the consequences of climate change can threaten the stability of these ecosystems. Two of these harmful marine events can be seen in Figure 1. Due to their economic, environmental, and social importance, the study, understanding, and monitoring of these regions is absolutely vital.

![Figure 1: A devastating "red tide" algal bloom & the Exxon-Valdez oil spill](http://serc.carleton.edu/images/microbelife/topics/red_tide_for_ed.jpg)

![Figure 1: A devastating "red tide" algal bloom & the Exxon-Valdez oil spill](http://trendsupdates.com/wp-content/uploads/2009/06/Exxon-Valdez-oil-spillage.jpg)

Scientists have been researching aquatic life for decades and have benefited greatly from the evolution of marine technology. Current data gathering methods in marine research exhibit a division for large and small bodies of water. Testing in small bodies of water is usually done manually as seen in Figure 2. Scientists spend hours taking individual samples by hand and bringing them back to their laboratories to perform tests. While adequate for very small bodies of water such as creeks and streams, this method of data collection quickly becomes ineffective, inefficient, and laborious for characterizing lakes, seas, and coastal regions. Manual testing wastes valuable time and

References:

